Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hong Shi, Hong-Jun Zhu* and Jin-Tang Wang

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China

Correspondence e-mail: zhuhj@njut.edu.cn

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.062$
$w R$ factor $=0.178$
Data-to-parameter ratio $=14.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

5-(4-Chlorophenyl)-1-phenylpyrazolidin-3-one

The title compound, $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}$, was synthesized by the reaction of ethyl 3-(4-chlorophenyl)acrylate and phenylhydrazine. Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds are effective in the crystal structure. The intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into dimers.

Comment

Some five-membered azole heterocycles, such as pyrazoles, thiazoles and pyrazole derivatives, are very important chemical and medical intermediates. 1,5-Diarylpyrazoles are particularly useful in the treatment of inflammation and related disorders (Reddy \& Bell, 2003). We report here the crystal structure of the title compound, (I).

(I)

The molecular structure of (I) is shown in Fig. 1, and selected bond lengths and angles are given in Table 1. Pyra-

Figure 1
The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. The intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond is indicated by a dashed line.

Received 29 November 2005
Accepted 9 December 2005
Online 14 December 2005

Figure 2
A packing diagram for (I). Dashed lines denote $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.
zolidine ring A ($\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 7-\mathrm{C} 9)$ adopts a twisted conformation (Low et al., 2003); the dihedral angle between the C7/C8/C9 and $\mathrm{C} 7 / \mathrm{N} 2 / \mathrm{N} 1 / \mathrm{C} 9$ planes is 21.6°. Because of the presence of the $\mathrm{C}=\mathrm{O}$ group in ring A, the acidity of the H atoms on C 8 may be increased (Zhu et al., 2004). The dihedral angle between the two aromatic rings $B(\mathrm{C} 1-\mathrm{C} 6)$ and $C(\mathrm{C} 10-\mathrm{C} 15)$ [64.8 (3) $)^{\circ}$] may be compared with the corresponding value in 5-(4-methoxyphenyl)-1-phenylpyrazolidin-3-one [79.5 (1) ${ }^{\circ}$; Shi et al., 2005].

Intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) are effective in stabilizing the crystal structure. The intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into dimers (Fig. 2).

Experimental

Ethanolamine (4 ml) and n-butanol $(20 \mathrm{ml})$ were added to a solution of sodium (40 mmol) in anhydrous methanol (9 mol). The methanol was removed by distillation and ethyl 3-(4-chlorophenyl)acrylate (30 mmol) was added. The resulting mixture was refluxed for 1 h at 373 K and then phenylhydrazine (4 ml) was added. The reaction mixture was refluxed for a further 7 h , left to cool to room temperature, acidified with acetic acid (36\%), allowed to stand and then filtered; the filter cake was crystallized from ethyl acetate to give pure compound (I) (yield $5.63 \mathrm{~g}, 69 \%$, m.p. 433-435 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}$
$M_{r}=272.72$
Monoclinic, $P 2_{1} / c$
$a=11.826$ (2) \AA
$b=10.227$ (2) \AA
$c=12.867$ (3) \AA
$\beta=115.74(3)^{\circ}$
$V=1401.8(6) \AA^{3}$
$Z=4$
$D_{x}=1.292 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=9-12^{\circ}$
$\mu=0.27 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Block, colourless $0.30 \times 0.30 \times 0.10 \mathrm{~mm}$

Data collection
Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.925, T_{\text {max }}=0.974$
2581 measured reflections
2456 independent reflections
1395 reflections with $I>2 \sigma(I)$
Refinement
Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062$
$w R\left(F^{2}\right)=0.178$
$S=1.00$
2456 reflections
172 parameters
H -atom parameters constrained
$R_{\text {int }}=0.123$
$\theta_{\text {max }}=25.0^{\circ}$
$h=0 \rightarrow 14$
$k=0 \rightarrow 12$
$l=-15 \rightarrow 13$
3 standard reflections every 200 reflections intensity decay: none

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.04 P)^{2} \\
&+3 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.33 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.37 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{Cl}-\mathrm{C} 13$	$1.742(5)$	$\mathrm{N} 1-\mathrm{C} 4$	$1.420(6)$
$\mathrm{O}-\mathrm{C} 7$	$1.220(5)$	$\mathrm{N} 1-\mathrm{C} 9$	$1.496(5)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.392(4)$	$\mathrm{N} 2-\mathrm{C} 7$	$1.334(5)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 4$	$114.8(3)$	$\mathrm{O}-\mathrm{C} 7-\mathrm{C} 8$	$127.7(4)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 9$	$104.2(3)$	$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8$	$106.1(4)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 9$	$116.8(3)$	$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10$	$111.7(3)$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{N} 1$	$116.1(3)$	$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 8$	$103.5(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1$	$119.2(4)$	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{Cl}$	$120.1(4)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{N} 1$	$121.4(4)$	$\mathrm{C} 14-\mathrm{C} 13-\mathrm{Cl}$	$119.2(4)$
$\mathrm{O}-\mathrm{C} 7-\mathrm{N} 2$	$126.1(4)$		

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O}^{\mathrm{i}}$	0.86	1.94	$2.799(5)$	174
$\mathrm{C} 11-\mathrm{H} 11 A \cdots \mathrm{~N} 1$	0.93	2.56	$2.875(7)$	101
Symmetry code: (i) $-x+2,-y+2,-z$				

The H atoms were positioned geometrically, with $\mathrm{N}-\mathrm{H}=0.86 \AA$, and $\mathrm{C}-\mathrm{H}=0.93$ (aromatic) and $0.98 \AA(\mathrm{CH})$ or $0.97 \AA\left(\mathrm{CH}_{2}\right)$, and constrained to ride on their parent atoms with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

organic papers

The authors thank Dr Shan Ning from Institution of Chemical and Engineering Sciences (ICES), Singapore, and the Center of Test and Analysis, Nanjing University, for support.

References

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Harms, K. \& Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.
Low, J. N., Quesada, A., Cobo, J., Nogueras, M., Sánchez, A., Abonia, R. \& Meier, H. (2003). Acta Cryst. E59, o66-o69.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Shi, H., Zhu, H.-J., Yin, P.-W., Wang, T.-J. \& Shi, X.-L. (2005). Acta Cryst. E61, o2246-2247.
Reddy, M. V. R. \& Bell, S. C. (2003). World Patent WO 03024958.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zhu, H.-J., Ma, J., Wei, C.-M. \& Wang J.-T. (2004). Acta Cryst. E60, o411-o413.

